Wissenschaftliche Leiter

Prof. Dr. Gerald Winz
gerald.winz@hs-kempten.de

Wissenschaftlicher Leiter Fakultät Maschinenbau

Schwerpunkte:

  • Simulation
  • Fabrikplanung
  • Industrie 4.0

Zum Xing-Profil

Prof. Dr. Stefan Wind
stefan.wind@hs-kempten.de

Wissenschaftlicher Leiter Fakultät Informatik

Schwerpunkte:

  • Integrierte Informationssysteme in der Wirtschaft
  • Industrie 4.0

Zum Xing-Profil

Wissenschaftliche Mitarbeitende

Nicolas Echterbecker
(M.Sc. cand.)

Wissenschaftlicher Mitarbeiter

Tätigkeiten:

  • Full Stack Development
  • Organisation & Projektmanagement
  • Betreuung von Studierenden
Sascha Kern
(B.Sc. cand.)

Laboringenieur

Tätigkeiten:

  • Maschinenbedienung DMU 75
  • NC-Programmierung und Versuche
  • Unterstützung der Lehre
Martin Winz
(M.Sc.)

Wissenschaftlicher Mitarbeiter

Tätigkeiten:

  • Forschung Werkzeugmaschinen
  • Projektmanagement & Koordination 
  • Betreuung der Industriepartner
Denis Siretchi
(M.Sc. cand.)

Wissenschaftlicher Mitarbeiter

Tätigkeiten:

  • Front-End Entwickler

Abschlussarbeiten

Semester Studierende(r) Thema Informationen
WS 25/26
Karaman, Amila
Entwicklung eines App-gestützten Energielastmanagementkonzepts für Werkzeugmaschinen auf Basis dynamischer Strombörsenpreise
WS 25/26
Paal, Daniel
Standardisierte Icons für industrielle Bedienoberflächen: Gestaltung und Evaluation in der Mensch-Maschine-Interaktion
WS 25/26
Bosch, Veronika
Konzeption und Evaluierung eines Human-Machine-Interaction Layouts für das Werkzeugmanagement einer Fräsmaschine innerhalb eines digitalen Steuerungssystems
SS 2025
Möller, Nils
Entwicklung und Validierung eines sensorbasierten Konzepts zur Ölnebelabsaugung in Werkzeugmaschinen
WS 24/25
Siretchi, Denis
Konzeption und Implementierung einer Cloud-basierten Integrationslösung für die Übertragung von Echtzeit-Maschinendaten
WS 24/25
Birk, Benedikt
Konzeptentwicklung einer intuitiven Nutzerführung moderner Werkzeugmaschinen mit dem Fokus auf die Verwendung grafischer Symbole
SS 2024
Rathke, David
Erstellung eines Geschäftsmodells für eine Smartphone App zur Unterstützung von Maschinenbedienern im Kontext von Industrie 4.0
SS 2024
Mercimekoglu, Taha
Nutzerzentrierte Konzeption einer Smartphone-App zur Überwachung von Energiezuständen mittels des Design Thinking Ansatzes
WS 21/22
Reiter, Michael
Erstellung eines mehrstufigen Use Case für die anspruchsvolle Wartung einer Werkzeugmaschine mittels Augmented Reality
WS 20/21
Dhanju, Amandeep Singh
Analyse, Konzeption und Entwicklung einer Smartwatch Anwendung im Kontext von Industrie 4.0
WS 20/21
Jerrischewski, Marco Alexander
Analyse, Konzeption und Implementierung einer Backend Architektur für eine Smartwatch Anwendung im Kontext von Industrie 4.0
WS 20/21
Kufahl, Ronja
Weiterentwicklung einer Smartwatch-Anwendung für den Shopfloor mittels Design Thinking Methode und pilothafte Implementierung
SS 2020
Bigler, Dimitri
Analyse und Konzeption einer Big Data Datenbank zur Verwaltung von Maschinenparametern im Rahmen der Digitalisierung
SS 2020
Dietrich, Vitus Jacob
Entwicklung, Integration und Validierung von Gamification und Augmented Reality im Maschinenwesen
SS 2020
Schmitt, Sebastian
Aufbau und Entwicklung eines Konzeptes zur effizienten Datenanbindung einer industriellen Werkzeugmaschine an eine Software zur diskreten Fabriksimulation
WS 19/20
Stuhlmiller, Fabian
Analyse, Konzeption und Prototypische Entwicklung einer Industrie 4.0 Smartwatch Anwendung für den Maschinenbau
WS 19/20
Mußack, Ida
Konzeption, wirtschaftliche Analyse und Design einer Industrie 4.0 Smartwatch Anwendung im Maschinenbau
WS 19/20
Kojadinovic, Milos
Analyse und Konzeption eines Pay-by-Stress Abrechnungsmodells für eine 5-Achs Fräsmaschine
WS 19/20
Brunner, Fabian
Durchführung einer Simulationsstudie zur Optimierung der Materialbereitstellung einer kontinuierlichen Fließmontage eines Maschinenbauunternehmens
WS 19/20
Führer, Kilian
Analyse und Anwendung von Predictive Analytics Verfahren zur Vorhersage von Unternehmenskennzahlen bei einem Werkzeugmaschinenhersteller
SS 2019
Koepfler, Patrick Jus
Integration von smarten Sensoren mit Hilfe von Bluetooth im Kontext von Internet of Things
SS 2019
Zhuozhou, Chen
Analyse relevanter Sensoren und Daten zur Belastungsmessung einer 5-Achs Fräsmaschine als Grundlage eines pay-by-stress Abrechnungsmodells
WS 18/19
Kienle, Nicola
Wirtschaftliche Bewertung der Use-Cases des Digital Twins zur Priorisierung zukünftiger Entwicklungsstufen